Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gu-Ping Tang ${ }^{\text {a* }}$ and Jian-Ming $G u^{b}$

${ }^{\text {a }}$ Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and ${ }^{\mathbf{b}}$ Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China

Correspondence e-mail:
tangguping@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.070$
$w R$ factor $=0.180$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(3-Methylanilino)pyridine-3-sulfonamide

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, the dihedral angle between the pyridine and benzene rings is $62.1(1)^{\circ}$. Molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a ribbon motif along the a axis.

Comment

The title compound, (I), is an important intermediate in the preparation of torasemide, which belongs to a group of medications known as loop diuretics (Rollinger et al., 2002; Wouters et al., 2000). The structure of (I) (Fig. 1) exhibits an elaborate hydrogen-bonding network involving $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ dimers and two other hydrogen-bonding motifs (Fig. 2). Selected geometric parameters are listed in Table 1, and the hydrogen-bonding geometry in Table 2. Atom N1 acts as a hydrogen-bond donor to atom $\mathrm{O} 1^{\mathrm{ii}}$ [symmetry code: (ii) $-x$, $-y,-z]$, so generating a centrosymmetric $R_{2}^{2}(8)$ graph-set (Etter, 1990) dimer. Intramolecular hydrogen-bond association from N3-H301 to O2 forms an $S(6)$ graph-set motif. Another hydrogen-bond interaction, $\mathrm{N} 1-\mathrm{H} 101 \cdots \mathrm{~N} 2^{\mathrm{i}}$ [symmetry code: (i) $1+x, y, z$], links molecules into a hydrogen-bonded ribbon motif along the a axis.

(I)

Experimental

Compound (I) was supplied by Linhai Dongdong Chemical Factory. Crystals of (I) suitable for X-ray diffraction were grown from an acetone solution by slow evaporation.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$Z=2$
$M_{r}=263.31$	$D_{x}=1.423 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.714(3) \AA$	Cell parameters from 5401
$b=8.630(4) \AA$	\quad reflections
$c=11.403(4) \AA$	$\theta=2.5-27.5^{\circ}$
$\alpha=98.640(11)^{\circ}$	$\mu=0.26 \mathrm{~mm}^{-1}$
$\beta=102.57(2)^{\circ}$	$T=296(1) \mathrm{K}$
$\gamma=102.911(12)^{\circ}$	Block, colorless
$V=614.7(4) \AA^{3}$	$0.30 \times 0.25 \times 0.12 \mathrm{~mm}$

Received 24 August 2005 Accepted 31 August 2005 Online 7 September 2005

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\min }=0.921, T_{\max }=0.969$
4455 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$
$w R\left(F^{2}\right)=0.180$
$S=1.00$
2055 reflections
163 parameters

2766 independent reflections 2055 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.085$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-11 \rightarrow 11$
$l=-14 \rightarrow 14$

H atoms treated by a mixture of independent and constrained refinement
$w=4 F_{\mathrm{o}}{ }^{2} /\left[0.004{F_{\mathrm{o}}}^{2}+4 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)+0.5\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.50 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

S1-O1	$1.416(2)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.752(3)$
S1-O2	$1.436(2)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.356(4)$
S1-N1	$1.589(3)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.416(3)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$119.25(14)$		
			$62.2(5)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 5$	$-36.3(3)$	$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 11$	$2.6(5)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 5$	$78.4(3)$	$\mathrm{C} 6-\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 4$	

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H101 $\cdots \mathrm{N}^{\mathrm{i}}$	0.88	2.12	$2.890(4)$	147
N1-H102 $\cdots 1^{\mathrm{ii}}$	0.86	2.17	$2.985(3)$	157
N3-H301 $\cdots \mathrm{O} 2$	0.86	2.10	$2.824(3)$	142
N3-H301 \cdots O $^{\text {iii }}$	0.86	2.47	$3.124(4)$	134

Symmetry codes: (i) $+x+1,+y,+z$; (ii) $-x,-y,-z$; (iii) $-x+1,-y+1,-z$.
H atoms bonded to N atoms were located in difference Fourier maps and included in the refinement based on the as-found $\mathrm{N}-\mathrm{H}$ bond lengths, but their $U_{\text {iso }}$ paramenters were refined and fixed in the final stage. All other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.96-0.98 \AA$ and included in the refinement as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows

Figure 1
The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A partial packing diagram for (I), showing the hydrogen-bonded (dashed lines) motif. [Symmetry codes: (i) $1+x, y, z$; (ii) $-x,-y,-z$.]
(Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rollinger, J. M., Gstrein, E. M. \& Burger, A. (2002). Eur. J. Pharm. Biopharm. 53, 75-86.
Wouters, J., Michaux, C., Durant, F., Dogne, J. M., Delarge, J. \& Masereel, B. (2000). Eur. J. Med. Chem. 35, 923-929.

